Semi-Supervised Domain Adaptation Using Explicit Class-Wise Matching for Domain-Invariant and Class-Discriminative Feature Learning
Semi-supervised domain adaptation (SSDA) is a promising technique for various applications. It can transfer knowledge learned from a source domain having high-density labeled samples to a target domain having limited labeled samples. Several previous works have attempted to reduce the distribution d...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9530420/ |