Using Brain Network Features to Increase the Classification Accuracy of MI-BCI Inefficiency Subject
Motor imagery-based brain-computer interface (MI-BCI) inefficiency phenomenon is one of the biggest challenges in MI-BCI research. BCI inefficiency subject is defined as the subject who cannot achieve classification accuracy higher than 70% since 70% is considered to be the minimum accuracy for comm...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8718003/ |