Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy
Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect) are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this c...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Beilstein-Institut
2017-08-01
|
Series: | Beilstein Journal of Nanotechnology |
Subjects: | |
Online Access: | https://doi.org/10.3762/bjnano.8.167 |