Tool Wear Status Recognition and Prediction Model of Milling Cutter Based on Deep Learning
In order to ensure the reliability and stability of the manufacturing process, tool wear state should be realized real-time and accurate monitoring. This paper proposes a tool wear state recognize and predictive framework model based on Stacking Sparse De-noising Auto-Encoder (SSDAE), the Particle S...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9306825/ |