Fibronectin Overexpression Modulates Formation of Macrophage Foam Cells by Activating SREBP2 Involved in Endoplasmic Reticulum Stress
Aims: To explore the explicit role of fibronectin (FN) isforms in atherosclerotic lesions and the underlying mechanisms. Methods and Results: Inducible stable expression was performed, and similar results were observed between EDA+FN (FN containing EDA domain) and EDA-FN (FN devoid of EDA domain). F...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cell Physiol Biochem Press GmbH & Co KG
2015-07-01
|
Series: | Cellular Physiology and Biochemistry |
Subjects: | |
Online Access: | http://www.karger.com/Article/FullText/430153 |
Summary: | Aims: To explore the explicit role of fibronectin (FN) isforms in atherosclerotic lesions and the underlying mechanisms. Methods and Results: Inducible stable expression was performed, and similar results were observed between EDA+FN (FN containing EDA domain) and EDA-FN (FN devoid of EDA domain). FN isforms could trigger endoplasmic reticulum (ER) stress, thereby leading to lipid accumulation in cultured Raw264.7 cells. FN isforms-induced gene expression and lipid accumulation were inhibited by a chemical chaperone 4-phenyl butyric acid (PBA) or by overexpression of the ER chaperone, GRP78/BiP, demonstrating a direct role of ER stress in activation of cholesterol/triglyceride biosynthesis. Moreover, activation of the sterol regulatory element binding protein-2 (SREBP2) was found to be downstream of ER stress, and this activation was affirmed to account for the intracellular accumulation of cholesterol using RNAi technique. Conclusion: our study suggests that enhanced FN in lesions facilitates foam cell formation due to dysregulation of the endogenous sterol response pathway by activation of ER stress, and confirms that EDA+FN has no more pro-atherogenic role than EDA-FN in triggering ER stress. |
---|---|
ISSN: | 1015-8987 1421-9778 |