NADPH Oxidase and the Degeneration of Dopaminergic Neurons in Parkinsonian Mice

Several lines of investigation have implicated oxidative stress in Parkinson’s disease (PD) pathogenesis, but the mechanisms involved are still unclear. In this study, we characterized the involvement of NADPH oxidase (Nox), a multisubunit enzyme that catalyzes the reduction of oxygen, in the 6-hydr...

Full description

Bibliographic Details
Main Authors: Marina S. Hernandes, Cecília C. Café-Mendes, Luiz R. G. Britto
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Oxidative Medicine and Cellular Longevity
Online Access:http://dx.doi.org/10.1155/2013/157857
Description
Summary:Several lines of investigation have implicated oxidative stress in Parkinson’s disease (PD) pathogenesis, but the mechanisms involved are still unclear. In this study, we characterized the involvement of NADPH oxidase (Nox), a multisubunit enzyme that catalyzes the reduction of oxygen, in the 6-hydroxydopamine- (6-OHDA-) induced PD mice model and compared for the first time the effects of this neurotoxin in mice lacking gp91phox-/-, the catalytic subunit of Nox2, and pharmacological inhibition of Nox with apocynin. Six-OHDA induced increased protein expression of p47phox, a Nox subunit, in striatum. gp91phox-/- mice appear to be completely protected from dopaminergic cell loss, whereas the apocynin treatment conferred only a limited neuroprotection. Wt mice treated with apocynin and gp91phox-/- mice both exhibited ameliorated apomorphine-induced rotational behavior. The microglial activation observed within the striatum and the substantia nigra pars compacta (SNpc) of 6-OHDA-injected Wt mice was prevented by apocynin treatment and was not detected in gp91phox-/- mice. Apocynin was not able to attenuate astrocyte activation in SN. The results support a role for Nox2 in the 6-OHDA-induced degeneration of dopaminergic neurons and glial cell activation in the nigrostriatal pathway and reveal that no comparable 6-OHDA effects were observed between apocynin-treated and gp91phox-/- mice groups.
ISSN:1942-0900
1942-0994