A Tunable Strain Sensor Using Nanogranular Metals

This paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID...

Full description

Bibliographic Details
Main Authors: Friedemann Völklein, Alexander Kaya, Jens Müller, Pintu Das, Heiko Reith, Fabrizio Porrati, Roland Sachser, Markus Baranowski, Christina Grimm, Christian H. Schwalb, Michael Huth
Format: Article
Language:English
Published: MDPI AG 2010-11-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/10/11/9847/
id doaj-5b70093655ce43879f07dcc251c56ae7
record_format Article
spelling doaj-5b70093655ce43879f07dcc251c56ae72020-11-25T00:19:21ZengMDPI AGSensors1424-82202010-11-0110119847985610.3390/s101109847A Tunable Strain Sensor Using Nanogranular MetalsFriedemann VölkleinAlexander KayaJens MüllerPintu DasHeiko ReithFabrizio PorratiRoland SachserMarkus BaranowskiChristina GrimmChristian H. SchwalbMichael HuthThis paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID) employing the precursor trimethylmethylcyclopentadienyl platinum [MeCpPt(Me)3]. We use a cantilever-based deflection technique to determine the sensitivity (gauge factor) of the sensor element. We find that its sensitivity depends on the electrical conductivity and can be continuously tuned, either by the thickness of the deposit or by electron-beam irradiation leading to a distinct maximum in the sensitivity. This maximum finds a theoretical rationale in recent advances in the understanding of electronic charge transport in nano-granular metals. http://www.mdpi.com/1424-8220/10/11/9847/cantileverselectron beam induced depositiongranular metalsstrain sensors
collection DOAJ
language English
format Article
sources DOAJ
author Friedemann Völklein
Alexander Kaya
Jens Müller
Pintu Das
Heiko Reith
Fabrizio Porrati
Roland Sachser
Markus Baranowski
Christina Grimm
Christian H. Schwalb
Michael Huth
spellingShingle Friedemann Völklein
Alexander Kaya
Jens Müller
Pintu Das
Heiko Reith
Fabrizio Porrati
Roland Sachser
Markus Baranowski
Christina Grimm
Christian H. Schwalb
Michael Huth
A Tunable Strain Sensor Using Nanogranular Metals
Sensors
cantilevers
electron beam induced deposition
granular metals
strain sensors
author_facet Friedemann Völklein
Alexander Kaya
Jens Müller
Pintu Das
Heiko Reith
Fabrizio Porrati
Roland Sachser
Markus Baranowski
Christina Grimm
Christian H. Schwalb
Michael Huth
author_sort Friedemann Völklein
title A Tunable Strain Sensor Using Nanogranular Metals
title_short A Tunable Strain Sensor Using Nanogranular Metals
title_full A Tunable Strain Sensor Using Nanogranular Metals
title_fullStr A Tunable Strain Sensor Using Nanogranular Metals
title_full_unstemmed A Tunable Strain Sensor Using Nanogranular Metals
title_sort tunable strain sensor using nanogranular metals
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2010-11-01
description This paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID) employing the precursor trimethylmethylcyclopentadienyl platinum [MeCpPt(Me)3]. We use a cantilever-based deflection technique to determine the sensitivity (gauge factor) of the sensor element. We find that its sensitivity depends on the electrical conductivity and can be continuously tuned, either by the thickness of the deposit or by electron-beam irradiation leading to a distinct maximum in the sensitivity. This maximum finds a theoretical rationale in recent advances in the understanding of electronic charge transport in nano-granular metals.
topic cantilevers
electron beam induced deposition
granular metals
strain sensors
url http://www.mdpi.com/1424-8220/10/11/9847/
work_keys_str_mv AT friedemannvolklein atunablestrainsensorusingnanogranularmetals
AT alexanderkaya atunablestrainsensorusingnanogranularmetals
AT jensmuller atunablestrainsensorusingnanogranularmetals
AT pintudas atunablestrainsensorusingnanogranularmetals
AT heikoreith atunablestrainsensorusingnanogranularmetals
AT fabrizioporrati atunablestrainsensorusingnanogranularmetals
AT rolandsachser atunablestrainsensorusingnanogranularmetals
AT markusbaranowski atunablestrainsensorusingnanogranularmetals
AT christinagrimm atunablestrainsensorusingnanogranularmetals
AT christianhschwalb atunablestrainsensorusingnanogranularmetals
AT michaelhuth atunablestrainsensorusingnanogranularmetals
AT friedemannvolklein tunablestrainsensorusingnanogranularmetals
AT alexanderkaya tunablestrainsensorusingnanogranularmetals
AT jensmuller tunablestrainsensorusingnanogranularmetals
AT pintudas tunablestrainsensorusingnanogranularmetals
AT heikoreith tunablestrainsensorusingnanogranularmetals
AT fabrizioporrati tunablestrainsensorusingnanogranularmetals
AT rolandsachser tunablestrainsensorusingnanogranularmetals
AT markusbaranowski tunablestrainsensorusingnanogranularmetals
AT christinagrimm tunablestrainsensorusingnanogranularmetals
AT christianhschwalb tunablestrainsensorusingnanogranularmetals
AT michaelhuth tunablestrainsensorusingnanogranularmetals
_version_ 1725371885843120128