On Weakly 2-Absorbing Semi-Primary Submodules of Modules over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be a unitary $R$-module. We say that a proper submodule $N$ of $M$ is a weakly $2$-absorbing semi-primary submodule if $a_{1}, a_{2}\in R, m\in N$ with $0 \neq a_{1}a_{2}m \in N$, then $a_{1}a_{2}\in \sqrt{(N : M)}$ or $a_{1}m \in N$ or $a^{n...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Etamaths Publishing
2018-05-01
|
Series: | International Journal of Analysis and Applications |
Online Access: | http://www.etamaths.com/index.php/ijaa/article/view/1675 |