Knowledge Transfer for On-Device Deep Reinforcement Learning in Resource Constrained Edge Computing Systems
Deep reinforcement learning (DRL) is a promising approach for developing control policies by learning how to perform tasks. Edge devices are required to control their actions by exploiting DRL to solve tasks autonomously in various applications such as smart manufacturing and autonomous driving. How...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9162017/ |