Breakdown of local information processing may underlie isoflurane anesthesia effects.
The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decouplin...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-06-01
|
Series: | PLoS Computational Biology |
Online Access: | https://doi.org/10.1371/journal.pcbi.1005511 |