Compressing by Learning in a Low-Rank and Sparse Decomposition Form
Low-rankness and sparsity are often used to guide the compression of convolutional neural networks (CNNs) separately. Since they capture global and local structure of a matrix respectively, we combine these two complementary properties together to pursue better network compression performance. Most...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8871134/ |