Accounting for skill in trend, variability, and autocorrelation facilitates better multi-model projections: Application to the AMOC and temperature time series.
We present a novel quasi-Bayesian method to weight multiple dynamical models by their skill at capturing both potentially non-linear trends and first-order autocorrelated variability of the underlying process, and to make weighted probabilistic projections. We validate the method using a suite of on...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0214535 |