Measuring the upset of CMOS and TTL due to HPM-signals

To measure the performance of electronic components when stressed by High Power Microwave signals a setup was designed and tested which allows a well-defined voltage signal to enter the component during normal operation, and to discriminate its effect on the component.</p><p style=&quot...

Full description

Bibliographic Details
Main Authors: N. Esser, B. Smailus
Format: Article
Language:deu
Published: Copernicus Publications 2004-01-01
Series:Advances in Radio Science
Online Access:http://www.adv-radio-sci.net/2/71/2004/ars-2-71-2004.pdf
Description
Summary:To measure the performance of electronic components when stressed by High Power Microwave signals a setup was designed and tested which allows a well-defined voltage signal to enter the component during normal operation, and to discriminate its effect on the component.</p><p style=&quot;line-height: 20px;&quot;> The microwave signal is fed to the outside conductor of a coaxial cable and couples into the inner signal line connected to the device under test (DUT). The disturbing HF-signal is transferred almost independent from frequency to maintain the pulse shape in the time domain. The configuration designed to perform a TEM-coupling within a 50 Ohm system prevents the secondary system from feeding back to the primary system and, due to the geometrical parameters chosen, the coupling efficiency is as high as 50–90%. Linear dimensions and terminations applied allow for pulses up to a width of 12ns and up to a voltage level of 4–5 kV on the outside conductor. These pulse parameters proved to be sufficient to upset the DUTs tested so far.</p><p style=&quot;line-height: 20px;&quot;> In more than 400 measurements a rectangular pulse of increasing voltage level was applied to different types of CMOS and TTL until the individual DUT was damaged. As well the pulse width (3, 6 or 12 ns) and its polarity were varied in single-shot or repetitive-shot experiments (500 shots per voltage at a repetition rate of 3 Hz). The state of the DUT was continuously monitored by measuring both the current of the DUT circuit and that of the oscillator providing the operating signal for the DUT.</p><p style=&quot;line-height: 20px;&quot;> The results show a very good reproducibility within a set of identical samples, remarkable differences between manufacturers and lower thresholds for repetitive testing, which indicates a memory effect of the DUT to exist for voltage levels significantly below the single-shot threshold.
ISSN:1684-9965
1684-9973