Generalized Lebesgue Points for Hajłasz Functions
Let X be a quasi-Banach function space over a doubling metric measure space P. Denote by αX the generalized upper Boyd index of X. We show that if αX<∞ and X has absolutely continuous quasinorm, then quasievery point is a generalized Lebesgue point of a quasicontinuous Hajłasz function u∈M˙s,X. M...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2018/5637042 |