Generalized Lebesgue Points for Hajłasz Functions

Let X be a quasi-Banach function space over a doubling metric measure space P. Denote by αX the generalized upper Boyd index of X. We show that if αX<∞ and X has absolutely continuous quasinorm, then quasievery point is a generalized Lebesgue point of a quasicontinuous Hajłasz function u∈M˙s,X. M...

Full description

Bibliographic Details
Main Author: Toni Heikkinen
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2018/5637042