Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway

<p>Abstract</p> <p>Background</p> <p>Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the sign...

Full description

Bibliographic Details
Main Authors: Castranova Vincent, Jiang Binghua, Shi Xianglin, Zhang Xingdong, Bowman Linda, Zhao Jinshun, Ding Min
Format: Article
Language:English
Published: BMC 2009-04-01
Series:Journal of Nanobiotechnology
Online Access:http://www.jnanobiotechnology.com/content/7/1/2
id doaj-4ef084fa1246408ba43238560bced537
record_format Article
spelling doaj-4ef084fa1246408ba43238560bced5372020-11-24T23:55:59ZengBMCJournal of Nanobiotechnology1477-31552009-04-0171210.1186/1477-3155-7-2Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathwayCastranova VincentJiang BinghuaShi XianglinZhang XingdongBowman LindaZhao JinshunDing Min<p>Abstract</p> <p>Background</p> <p>Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles.</p> <p>Results</p> <p>Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95), Fas-associated protein with death domain (FADD), caspase-8, death receptor 3 (DR3) and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP) western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC) in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF) was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome <it>c </it>was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome <it>c </it>release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B) and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment.</p> <p>Conclusion</p> <p>In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death induced by metallic nickel particles in JB6 cells is through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway. Lamin A and beta-actin are involved in the process of apoptosis. Activation of Akt and Bcl-2 may play an important role in preventing cytochrome <it>c </it>release from mitochondria to the cytoplasm and may also be important in the carcinogenicity of metallic nickel particles. In addition, the results may be useful as an important reference when comparing the toxicities of different nickel compounds.</p> http://www.jnanobiotechnology.com/content/7/1/2
collection DOAJ
language English
format Article
sources DOAJ
author Castranova Vincent
Jiang Binghua
Shi Xianglin
Zhang Xingdong
Bowman Linda
Zhao Jinshun
Ding Min
spellingShingle Castranova Vincent
Jiang Binghua
Shi Xianglin
Zhang Xingdong
Bowman Linda
Zhao Jinshun
Ding Min
Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway
Journal of Nanobiotechnology
author_facet Castranova Vincent
Jiang Binghua
Shi Xianglin
Zhang Xingdong
Bowman Linda
Zhao Jinshun
Ding Min
author_sort Castranova Vincent
title Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway
title_short Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway
title_full Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway
title_fullStr Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway
title_full_unstemmed Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway
title_sort metallic nickel nano- and fine particles induce jb6 cell apoptosis through a caspase-8/aif mediated cytochrome <it>c</it>-independent pathway
publisher BMC
series Journal of Nanobiotechnology
issn 1477-3155
publishDate 2009-04-01
description <p>Abstract</p> <p>Background</p> <p>Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles.</p> <p>Results</p> <p>Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95), Fas-associated protein with death domain (FADD), caspase-8, death receptor 3 (DR3) and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP) western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC) in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF) was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome <it>c </it>was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome <it>c </it>release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B) and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment.</p> <p>Conclusion</p> <p>In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death induced by metallic nickel particles in JB6 cells is through a caspase-8/AIF mediated cytochrome <it>c</it>-independent pathway. Lamin A and beta-actin are involved in the process of apoptosis. Activation of Akt and Bcl-2 may play an important role in preventing cytochrome <it>c </it>release from mitochondria to the cytoplasm and may also be important in the carcinogenicity of metallic nickel particles. In addition, the results may be useful as an important reference when comparing the toxicities of different nickel compounds.</p>
url http://www.jnanobiotechnology.com/content/7/1/2
work_keys_str_mv AT castranovavincent metallicnickelnanoandfineparticlesinducejb6cellapoptosisthroughacaspase8aifmediatedcytochromeitcitindependentpathway
AT jiangbinghua metallicnickelnanoandfineparticlesinducejb6cellapoptosisthroughacaspase8aifmediatedcytochromeitcitindependentpathway
AT shixianglin metallicnickelnanoandfineparticlesinducejb6cellapoptosisthroughacaspase8aifmediatedcytochromeitcitindependentpathway
AT zhangxingdong metallicnickelnanoandfineparticlesinducejb6cellapoptosisthroughacaspase8aifmediatedcytochromeitcitindependentpathway
AT bowmanlinda metallicnickelnanoandfineparticlesinducejb6cellapoptosisthroughacaspase8aifmediatedcytochromeitcitindependentpathway
AT zhaojinshun metallicnickelnanoandfineparticlesinducejb6cellapoptosisthroughacaspase8aifmediatedcytochromeitcitindependentpathway
AT dingmin metallicnickelnanoandfineparticlesinducejb6cellapoptosisthroughacaspase8aifmediatedcytochromeitcitindependentpathway
_version_ 1725460237580763136