Summary: | Inhibiting the programmed cell death ligand-1 (PD-L1)/programmed cell death receptor-1 (PD-1) signaling axis reinvigorates the antitumor immune response with remarkable clinical efficacy. Yet, low response rates limit the benefits of immunotherapy to a minority of patients. Recent studies have explored the importance of PD-L1 as a transmembrane protein in exosomes and have revealed exosomal PD-L1 as a mechanism of tumor immune escape and immunotherapy resistance. Exosomal PD-L1 suppresses T cell effector function, induces systemic immunosuppression, and transfers functional PD-L1 across the tumor microenvironment (TME). Because of its significant contribution to immune escape, exosomal PD-L1 has been proposed as a biomarker to predict immunotherapy response and to assess therapeutic efficacy. In this review, we summarize the immunological mechanisms of exosomal PD-L1, focusing on the factors that lead to exosome biogenesis and release. Next, we review the effect of exosomal PD-L1 on T cell function and its role across the TME. In addition, we discuss the latest findings on the use of exosomal PD-L1 as a biomarker for cancer immunotherapy. Throughout this review, we propose exosomal PD-L1 as a critical mediator of tumor progression and highlight the clinical implications that follow for immuno-oncology, discussing the potential to target exosomes to advance cancer treatment.
|