A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay.
The nonsense-mediated decay (NMD) pathway subjects mRNAs with premature termination codons (PTCs) to rapid decay. The conserved Upf1-3 complex interacts with the eukaryotic translation release factors, eRF3 and eRF1, and triggers NMD when translation termination takes place at a PTC. Contrasting mod...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2008-04-01
|
Series: | PLoS Biology |
Online Access: | http://europepmc.org/articles/PMC2689706?pdf=render |
id |
doaj-4d928ffcee2f4f549f5f16c276d57500 |
---|---|
record_format |
Article |
spelling |
doaj-4d928ffcee2f4f549f5f16c276d575002021-07-02T10:14:23ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852008-04-0164e11110.1371/journal.pbio.0060111A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay.Guramrit SinghIndrani RebbapragadaJens Lykke-AndersenThe nonsense-mediated decay (NMD) pathway subjects mRNAs with premature termination codons (PTCs) to rapid decay. The conserved Upf1-3 complex interacts with the eukaryotic translation release factors, eRF3 and eRF1, and triggers NMD when translation termination takes place at a PTC. Contrasting models postulate central roles in PTC-recognition for the exon junction complex in mammals versus the cytoplasmic poly(A)-binding protein (PABP) in other eukaryotes. Here we present evidence for a unified model for NMD, in which PTC recognition in human cells is mediated by a competition between 3' UTR-associated factors that stimulate or antagonize recruitment of the Upf complex to the terminating ribosome. We identify cytoplasmic PABP as a human NMD antagonizing factor, which inhibits the interaction between eRF3 and Upf1 in vitro and prevents NMD in cells when positioned in proximity to the termination codon. Surprisingly, only when an extended 3' UTR places cytoplasmic PABP distally to the termination codon does a downstream exon junction complex enhance NMD, likely through increasing the affinity of Upf proteins for the 3' UTR. Interestingly, while an artificial 3' UTR of >420 nucleotides triggers NMD, a large subset of human mRNAs contain longer 3' UTRs but evade NMD. We speculate that these have evolved to concentrate NMD-inhibiting factors, such as PABP, in spatial proximity of the termination codon.http://europepmc.org/articles/PMC2689706?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Guramrit Singh Indrani Rebbapragada Jens Lykke-Andersen |
spellingShingle |
Guramrit Singh Indrani Rebbapragada Jens Lykke-Andersen A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biology |
author_facet |
Guramrit Singh Indrani Rebbapragada Jens Lykke-Andersen |
author_sort |
Guramrit Singh |
title |
A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. |
title_short |
A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. |
title_full |
A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. |
title_fullStr |
A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. |
title_full_unstemmed |
A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. |
title_sort |
competition between stimulators and antagonists of upf complex recruitment governs human nonsense-mediated mrna decay. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Biology |
issn |
1544-9173 1545-7885 |
publishDate |
2008-04-01 |
description |
The nonsense-mediated decay (NMD) pathway subjects mRNAs with premature termination codons (PTCs) to rapid decay. The conserved Upf1-3 complex interacts with the eukaryotic translation release factors, eRF3 and eRF1, and triggers NMD when translation termination takes place at a PTC. Contrasting models postulate central roles in PTC-recognition for the exon junction complex in mammals versus the cytoplasmic poly(A)-binding protein (PABP) in other eukaryotes. Here we present evidence for a unified model for NMD, in which PTC recognition in human cells is mediated by a competition between 3' UTR-associated factors that stimulate or antagonize recruitment of the Upf complex to the terminating ribosome. We identify cytoplasmic PABP as a human NMD antagonizing factor, which inhibits the interaction between eRF3 and Upf1 in vitro and prevents NMD in cells when positioned in proximity to the termination codon. Surprisingly, only when an extended 3' UTR places cytoplasmic PABP distally to the termination codon does a downstream exon junction complex enhance NMD, likely through increasing the affinity of Upf proteins for the 3' UTR. Interestingly, while an artificial 3' UTR of >420 nucleotides triggers NMD, a large subset of human mRNAs contain longer 3' UTRs but evade NMD. We speculate that these have evolved to concentrate NMD-inhibiting factors, such as PABP, in spatial proximity of the termination codon. |
url |
http://europepmc.org/articles/PMC2689706?pdf=render |
work_keys_str_mv |
AT guramritsingh acompetitionbetweenstimulatorsandantagonistsofupfcomplexrecruitmentgovernshumannonsensemediatedmrnadecay AT indranirebbapragada acompetitionbetweenstimulatorsandantagonistsofupfcomplexrecruitmentgovernshumannonsensemediatedmrnadecay AT jenslykkeandersen acompetitionbetweenstimulatorsandantagonistsofupfcomplexrecruitmentgovernshumannonsensemediatedmrnadecay AT guramritsingh competitionbetweenstimulatorsandantagonistsofupfcomplexrecruitmentgovernshumannonsensemediatedmrnadecay AT indranirebbapragada competitionbetweenstimulatorsandantagonistsofupfcomplexrecruitmentgovernshumannonsensemediatedmrnadecay AT jenslykkeandersen competitionbetweenstimulatorsandantagonistsofupfcomplexrecruitmentgovernshumannonsensemediatedmrnadecay |
_version_ |
1721332215663558656 |