Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems

Generation of metal plasma in vacuum arc discharge is always accompanied by a production of macroparticles (MPs). The MP contamination in coatings is the most important technological problem in plasma immersion ion implantation (PIII). For the case of PIII with long pulse duration, the results of th...

Full description

Bibliographic Details
Main Authors: Elena V. Romashchenko, Aleksander A. Bizyukov, Igor O. Girka
Format: Article
Language:English
Published: V.N. Karazin Kharkiv National University Publishing 2020-02-01
Series:East European Journal of Physics
Subjects:
Online Access:https://periodicals.karazin.ua/eejp/article/view/15446
id doaj-4d75423045934534adde7e89f8454de3
record_format Article
spelling doaj-4d75423045934534adde7e89f8454de32020-11-25T03:37:54ZengV.N. Karazin Kharkiv National University PublishingEast European Journal of Physics2312-43342312-45392020-02-011606510.26565/2312-4334-2020-1-0415446Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation SystemsElena V. Romashchenko0Aleksander A. Bizyukov1Igor O. Girka2V.N. Karazin Kharkiv National University, Kharkiv, UkraineV.N. Karazin Kharkiv National University, Kharkiv, UkraineV.N. Karazin Kharkiv National University, Kharkiv, UkraineGeneration of metal plasma in vacuum arc discharge is always accompanied by a production of macroparticles (MPs). The MP contamination in coatings is the most important technological problem in plasma immersion ion implantation (PIII). For the case of PIII with long pulse duration, the results of theoretical study of MP charging and dynamics in the plasma sheath are presented. To describe the MP charging in the sheath the sheath model is combined with orbital motion limited (OML) theory. The MP charging in the sheath is studied with taking into account emission processes from MP surface as well as kinetic electron emission (KEE) from the high voltage substrate. The charge and dynamics of MP are governed by local parameters of counter fluxes of ions and secondary electrons from the substrate. The MP charge depends on the MP local position within the sheath. The dominant role in MP charging is shown to be played by KEE from the substrate, which is an important feature of PIII. KEE from the substrate changes the potential profile within the sheath, the sheath thickness, and current balance on MP surface. MP charge is obtained to be negative because it is caused by higher current density of secondary electrons from the substrate than that of ions. The latter is possible for KEE yield larger than a unit. The substrate biasing influences both the release of secondary electrons from the substrate under ion impact and their acceleration in the sheath. The increasing of negative substrate bias is demonstrated to result in the increasing of absolute value of negative MP charge, and, thereby, the increasing of electrostatic reflection of MP from the substrate. The negative substrate biasing is shown to be the effective alternative method to reduce MP contaminations in coatings without applying any magnetic filters.https://periodicals.karazin.ua/eejp/article/view/15446plasma immersion ion implantationmacroparticlekinetic electron emission
collection DOAJ
language English
format Article
sources DOAJ
author Elena V. Romashchenko
Aleksander A. Bizyukov
Igor O. Girka
spellingShingle Elena V. Romashchenko
Aleksander A. Bizyukov
Igor O. Girka
Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems
East European Journal of Physics
plasma immersion ion implantation
macroparticle
kinetic electron emission
author_facet Elena V. Romashchenko
Aleksander A. Bizyukov
Igor O. Girka
author_sort Elena V. Romashchenko
title Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems
title_short Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems
title_full Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems
title_fullStr Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems
title_full_unstemmed Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems
title_sort macroparticle reflection from a biased substrtate in plasma ion implantation systems
publisher V.N. Karazin Kharkiv National University Publishing
series East European Journal of Physics
issn 2312-4334
2312-4539
publishDate 2020-02-01
description Generation of metal plasma in vacuum arc discharge is always accompanied by a production of macroparticles (MPs). The MP contamination in coatings is the most important technological problem in plasma immersion ion implantation (PIII). For the case of PIII with long pulse duration, the results of theoretical study of MP charging and dynamics in the plasma sheath are presented. To describe the MP charging in the sheath the sheath model is combined with orbital motion limited (OML) theory. The MP charging in the sheath is studied with taking into account emission processes from MP surface as well as kinetic electron emission (KEE) from the high voltage substrate. The charge and dynamics of MP are governed by local parameters of counter fluxes of ions and secondary electrons from the substrate. The MP charge depends on the MP local position within the sheath. The dominant role in MP charging is shown to be played by KEE from the substrate, which is an important feature of PIII. KEE from the substrate changes the potential profile within the sheath, the sheath thickness, and current balance on MP surface. MP charge is obtained to be negative because it is caused by higher current density of secondary electrons from the substrate than that of ions. The latter is possible for KEE yield larger than a unit. The substrate biasing influences both the release of secondary electrons from the substrate under ion impact and their acceleration in the sheath. The increasing of negative substrate bias is demonstrated to result in the increasing of absolute value of negative MP charge, and, thereby, the increasing of electrostatic reflection of MP from the substrate. The negative substrate biasing is shown to be the effective alternative method to reduce MP contaminations in coatings without applying any magnetic filters.
topic plasma immersion ion implantation
macroparticle
kinetic electron emission
url https://periodicals.karazin.ua/eejp/article/view/15446
work_keys_str_mv AT elenavromashchenko macroparticlereflectionfromabiasedsubstrtateinplasmaionimplantationsystems
AT aleksanderabizyukov macroparticlereflectionfromabiasedsubstrtateinplasmaionimplantationsystems
AT igorogirka macroparticlereflectionfromabiasedsubstrtateinplasmaionimplantationsystems
_version_ 1724543178274504704