Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems
Generation of metal plasma in vacuum arc discharge is always accompanied by a production of macroparticles (MPs). The MP contamination in coatings is the most important technological problem in plasma immersion ion implantation (PIII). For the case of PIII with long pulse duration, the results of th...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
V.N. Karazin Kharkiv National University Publishing
2020-02-01
|
Series: | East European Journal of Physics |
Subjects: | |
Online Access: | https://periodicals.karazin.ua/eejp/article/view/15446 |
id |
doaj-4d75423045934534adde7e89f8454de3 |
---|---|
record_format |
Article |
spelling |
doaj-4d75423045934534adde7e89f8454de32020-11-25T03:37:54ZengV.N. Karazin Kharkiv National University PublishingEast European Journal of Physics2312-43342312-45392020-02-011606510.26565/2312-4334-2020-1-0415446Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation SystemsElena V. Romashchenko0Aleksander A. Bizyukov1Igor O. Girka2V.N. Karazin Kharkiv National University, Kharkiv, UkraineV.N. Karazin Kharkiv National University, Kharkiv, UkraineV.N. Karazin Kharkiv National University, Kharkiv, UkraineGeneration of metal plasma in vacuum arc discharge is always accompanied by a production of macroparticles (MPs). The MP contamination in coatings is the most important technological problem in plasma immersion ion implantation (PIII). For the case of PIII with long pulse duration, the results of theoretical study of MP charging and dynamics in the plasma sheath are presented. To describe the MP charging in the sheath the sheath model is combined with orbital motion limited (OML) theory. The MP charging in the sheath is studied with taking into account emission processes from MP surface as well as kinetic electron emission (KEE) from the high voltage substrate. The charge and dynamics of MP are governed by local parameters of counter fluxes of ions and secondary electrons from the substrate. The MP charge depends on the MP local position within the sheath. The dominant role in MP charging is shown to be played by KEE from the substrate, which is an important feature of PIII. KEE from the substrate changes the potential profile within the sheath, the sheath thickness, and current balance on MP surface. MP charge is obtained to be negative because it is caused by higher current density of secondary electrons from the substrate than that of ions. The latter is possible for KEE yield larger than a unit. The substrate biasing influences both the release of secondary electrons from the substrate under ion impact and their acceleration in the sheath. The increasing of negative substrate bias is demonstrated to result in the increasing of absolute value of negative MP charge, and, thereby, the increasing of electrostatic reflection of MP from the substrate. The negative substrate biasing is shown to be the effective alternative method to reduce MP contaminations in coatings without applying any magnetic filters.https://periodicals.karazin.ua/eejp/article/view/15446plasma immersion ion implantationmacroparticlekinetic electron emission |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Elena V. Romashchenko Aleksander A. Bizyukov Igor O. Girka |
spellingShingle |
Elena V. Romashchenko Aleksander A. Bizyukov Igor O. Girka Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems East European Journal of Physics plasma immersion ion implantation macroparticle kinetic electron emission |
author_facet |
Elena V. Romashchenko Aleksander A. Bizyukov Igor O. Girka |
author_sort |
Elena V. Romashchenko |
title |
Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems |
title_short |
Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems |
title_full |
Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems |
title_fullStr |
Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems |
title_full_unstemmed |
Macroparticle Reflection from a Biased Substrtate in Plasma Ion Implantation Systems |
title_sort |
macroparticle reflection from a biased substrtate in plasma ion implantation systems |
publisher |
V.N. Karazin Kharkiv National University Publishing |
series |
East European Journal of Physics |
issn |
2312-4334 2312-4539 |
publishDate |
2020-02-01 |
description |
Generation of metal plasma in vacuum arc discharge is always accompanied by a production of macroparticles (MPs). The MP contamination in coatings is the most important technological problem in plasma immersion ion implantation (PIII). For the case of PIII with long pulse duration, the results of theoretical study of MP charging and dynamics in the plasma sheath are presented. To describe the MP charging in the sheath the sheath model is combined with orbital motion limited (OML) theory. The MP charging in the sheath is studied with taking into account emission processes from MP surface as well as kinetic electron emission (KEE) from the high voltage substrate. The charge and dynamics of MP are governed by local parameters of counter fluxes of ions and secondary electrons from the substrate. The MP charge depends on the MP local position within the sheath. The dominant role in MP charging is shown to be played by KEE from the substrate, which is an important feature of PIII. KEE from the substrate changes the potential profile within the sheath, the sheath thickness, and current balance on MP surface. MP charge is obtained to be negative because it is caused by higher current density of secondary electrons from the substrate than that of ions. The latter is possible for KEE yield larger than a unit. The substrate biasing influences both the release of secondary electrons from the substrate under ion impact and their acceleration in the sheath. The increasing of negative substrate bias is demonstrated to result in the increasing of absolute value of negative MP charge, and, thereby, the increasing of electrostatic reflection of MP from the substrate. The negative substrate biasing is shown to be the effective alternative method to reduce MP contaminations in coatings without applying any magnetic filters. |
topic |
plasma immersion ion implantation macroparticle kinetic electron emission |
url |
https://periodicals.karazin.ua/eejp/article/view/15446 |
work_keys_str_mv |
AT elenavromashchenko macroparticlereflectionfromabiasedsubstrtateinplasmaionimplantationsystems AT aleksanderabizyukov macroparticlereflectionfromabiasedsubstrtateinplasmaionimplantationsystems AT igorogirka macroparticlereflectionfromabiasedsubstrtateinplasmaionimplantationsystems |
_version_ |
1724543178274504704 |