Temporary CXCR3 and CCR5 Antagonism Following Vaccination Enhances Memory CD8 T Cell Immune Responses
Abstract Although current vaccination strategies have been successful at preventing a variety of human diseases, attempts at vaccinating against some pathogens such as AIDS and tuberculosis (TB) have been more problematic, largely because abnormally high numbers of antigen-specific CD8 + T cells are...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2016-07-01
|
Series: | Molecular Medicine |
Online Access: | http://link.springer.com/article/10.2119/molmed.2015.00218 |
Summary: | Abstract Although current vaccination strategies have been successful at preventing a variety of human diseases, attempts at vaccinating against some pathogens such as AIDS and tuberculosis (TB) have been more problematic, largely because abnormally high numbers of antigen-specific CD8 + T cells are required for protection. This study assessed the effect on host immune response of temporarily dampening the chemokine receptors CXCR3 and CCR5 after vaccination by administration of TAK-779, a small-molecule CXCR3 and CCR5 antagonist commonly used to inhibit HIV infection. Our results showed that use of TAK-779 enhanced memory CD8 + T cell immune responses both qualitatively and quantitatively. Treatment with TAK-779 following vaccination of an influenza virus antigen resulted in enhanced memory generation, with more CD8 + CD127 + memory precursors and fewer terminally differentiated effector CD8 + CD69 + T cells. These memory T cells were able to become IFN-γ-secreting effector cells when re-encountering the same antigen, which can further enhance the efficacy of vaccination. The mice vaccinated in the presence of TAK-779 were better protected upon influenza virus challenge than the controls. These results show that vaccination, while temporarily inhibiting chemokine receptors CXCR3 and CCR5 by TAK-779, could be a promising strategy to generate large numbers of protective memory CD8 + T cells. |
---|---|
ISSN: | 1076-1551 1528-3658 |