Rearrangements of the intermediate filament GFAP in primary human schwannoma cells

Loss of the tumor suppressor protein merlin causes a variety of benign tumors such as schwannomas, meningiomas, and gliomas in man. We previously reported primary human schwannoma cells to show enhanced integrin-dependent adhesion and a hyperactivation of the small RhoGTPase Rac1. Here we show that...

Full description

Bibliographic Details
Main Authors: Tamara Utermark, Simone J.A. Schubert, C. Oliver Hanemann
Format: Article
Language:English
Published: Elsevier 2005-06-01
Series:Neurobiology of Disease
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996104002852
Description
Summary:Loss of the tumor suppressor protein merlin causes a variety of benign tumors such as schwannomas, meningiomas, and gliomas in man. We previously reported primary human schwannoma cells to show enhanced integrin-dependent adhesion and a hyperactivation of the small RhoGTPase Rac1. Here we show that the main intermediate filament protein of Schwann cells, the glial fibrillary acidic protein, is collapsed to the perinuclear region instead of being well-spread from the nucleus to the cell periphery. This cytoskeletal reorganization is accompanied by changes in cell shape and increased cell motility. Moreover, we report tyrosine phosphorylation to be enhanced in schwannoma cells, already described earlier in intermediate filament breakdown. Thus, we believe that Rac activation via tyrosine kinase stimulation leads to GFAP collapse in human schwannoma cells, and suggest that this process plays an important role in vivo where schwannoma cells become motile, unspecifically ensheathing extracellular matrix and forming pseudomesaxons.
ISSN:1095-953X