On commutativity of prime and semiprime rings with generalized derivations
Let $R$ be a prime ring, extended centroid $C$ and $m, n, k \geq1$ are fixed integers. If $R$ admits a generalized derivation $F$ associated with a derivation $d$ such that $(F(x)\circ y)^{m}+(x\circ d(y))^{n}=0$ or $(F(x)\circ_{m} y)^{k} + x\circ_{n} d(y)$=0 for all $x, y \in I$, where $I$ is a non...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Accademia Piceno Aprutina dei Velati
2020-06-01
|
Series: | Ratio Mathematica |
Subjects: | |
Online Access: | http://eiris.it/ojs/index.php/ratiomathematica/article/view/502 |