On commutativity of prime and semiprime rings with generalized derivations

Let $R$ be a prime ring, extended centroid $C$ and $m, n, k \geq1$ are fixed integers. If $R$ admits a generalized derivation $F$ associated with a derivation $d$ such that $(F(x)\circ y)^{m}+(x\circ d(y))^{n}=0$ or $(F(x)\circ_{m} y)^{k} + x\circ_{n} d(y)$=0 for all $x, y \in I$, where $I$ is a non...

Full description

Bibliographic Details
Main Author: MD Hamidur Rahaman
Format: Article
Language:English
Published: Accademia Piceno Aprutina dei Velati 2020-06-01
Series:Ratio Mathematica
Subjects:
Online Access:http://eiris.it/ojs/index.php/ratiomathematica/article/view/502