Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data
Abstract Background The ability to confidently predict health outcomes from gene expression would catalyze a revolution in molecular diagnostics. Yet, the goal of developing actionable, robust, and reproducible predictive signatures of phenotypes such as clinical outcome has not been attained in alm...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-03-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-020-3427-8 |