Noninner automorphisms of finite p-groups leaving the center elementwise fixed
A longstanding conjecture asserts that every finite nonabelian p-group admits a noninner automorphism of order p. Let G be a finite nonabelian p-group. It is known that if G is regular or of nilpotency class 2 or the commutator subgroup of G is cyclic, or G/Z(G) is powerful, then G has a noninner au...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2013-12-01
|
Series: | International Journal of Group Theory |
Subjects: | |
Online Access: | http://www.theoryofgroups.ir/?_action=showPDF&article=2761&_ob=dbf6c7e37f884c3d7c270219cb030012&fileName=full_text.pdf. |