New Results on the (Super) Edge-Magic Deficiency of Chain Graphs

Let G be a graph of order v and size e. An edge-magic labeling of G is a bijection f:V(G)∪E(G)→{1,2,3,…,v+e} such that f(x)+f(xy)+f(y) is a constant for every edge xy∈E(G). An edge-magic labeling f of G with f(V(G))={1,2,3,…,v} is called a super edge-magic labeling. Furthermore, the edge-magic defic...

Full description

Bibliographic Details
Main Authors: Ngurah Anak Agung Gede, Adiwijaya
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2017/5156974
Description
Summary:Let G be a graph of order v and size e. An edge-magic labeling of G is a bijection f:V(G)∪E(G)→{1,2,3,…,v+e} such that f(x)+f(xy)+f(y) is a constant for every edge xy∈E(G). An edge-magic labeling f of G with f(V(G))={1,2,3,…,v} is called a super edge-magic labeling. Furthermore, the edge-magic deficiency of a graph G, μ(G), is defined as the smallest nonnegative integer n such that G∪nK1 has an edge-magic labeling. Similarly, the super edge-magic deficiency of a graph G, μs(G), is either the smallest nonnegative integer n such that G∪nK1 has a super edge-magic labeling or +∞ if there exists no such integer n. In this paper, we investigate the (super) edge-magic deficiency of chain graphs. Referring to these, we propose some open problems.
ISSN:0161-1712
1687-0425