Fault Diagnosis Based on Multi-Scale Redefined Dimensionless Indicators and Density Peak Clustering With Geodesic Distances
A novel fault diagnosis method for rolling bearings based on multi-scale redefined dimensionless indicators and an unsupervised feature selection method using density peak clustering with geodesic distances is proposed in this paper. First, a new feature extraction method is proposed based on redefi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9075995/ |