Fractional eigenvalue problems on $\mathbb{R}^N$
Let $N\geq 2$ be an integer. For each real number $s\in(0,1)$ we denote by $(-\Delta)^s$ the corresponding fractional Laplace operator. First, we investigate the eigenvalue problem $(-\Delta)^s u=\lambda V(x)u$ on $\mathbb{R}^N$, where $V:\mathbb{R}^N\rightarrow\mathbb{R}$ is a given function. Unde...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2020-04-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8250 |