A nine-hub-gene signature of metabolic syndrome identified using machine learning algorithms and integrated bioinformatics
Early risk assessments and interventions for metabolic syndrome (MetS) are limited because of a lack of effective biomarkers. In the present study, several candidate genes were selected as a blood-based transcriptomic signature for MetS. We collected so far the largest MetS-associated peripheral blo...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2021-01-01
|
Series: | Bioengineered |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/21655979.2021.1968249 |