Error Bound of Mode-Based Additive Models
Due to their flexibility and interpretability, additive models are powerful tools for high-dimensional mean regression and variable selection. However, the least-squares loss-based mean regression models suffer from sensitivity to non-Gaussian noises, and there is also a need to improve the model’s...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/6/651 |