Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A
The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-01-01
|
Series: | Redox Biology |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213231719307918 |
id |
doaj-455304bdf2544f08bd2e21616c0f6c16 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Christoph Göbl Vanessa K. Morris Loes van Dam Marieke Visscher Paulien E. Polderman Christoph Hartlmüller Hesther de Ruiter Manuel Hora Laura Liesinger Ruth Birner-Gruenberger Harmjan R. Vos Bernd Reif Tobias Madl Tobias B. Dansen |
spellingShingle |
Christoph Göbl Vanessa K. Morris Loes van Dam Marieke Visscher Paulien E. Polderman Christoph Hartlmüller Hesther de Ruiter Manuel Hora Laura Liesinger Ruth Birner-Gruenberger Harmjan R. Vos Bernd Reif Tobias Madl Tobias B. Dansen Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A Redox Biology |
author_facet |
Christoph Göbl Vanessa K. Morris Loes van Dam Marieke Visscher Paulien E. Polderman Christoph Hartlmüller Hesther de Ruiter Manuel Hora Laura Liesinger Ruth Birner-Gruenberger Harmjan R. Vos Bernd Reif Tobias Madl Tobias B. Dansen |
author_sort |
Christoph Göbl |
title |
Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A |
title_short |
Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A |
title_full |
Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A |
title_fullStr |
Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A |
title_full_unstemmed |
Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A |
title_sort |
cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16ink4a |
publisher |
Elsevier |
series |
Redox Biology |
issn |
2213-2317 |
publishDate |
2020-01-01 |
description |
The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible oxidation of cysteines (redox signaling). Here we report that oxidation of the single cysteine in p16INK4A in human cells occurs under relatively mild oxidizing conditions and leads to disulfide-dependent dimerization. p16INK4A is an all α-helical protein, but we find that upon cysteine-dependent dimerization, p16INK4A undergoes a dramatic structural rearrangement and forms aggregates that have the typical features of amyloid fibrils, including binding of diagnostic dyes, presence of cross-β sheet structure, and typical dimensions found in electron microscopy. p16INK4A amyloid formation abolishes its function as a Cyclin Dependent Kinase 4/6 inhibitor. Collectively, these observations mechanistically link the cellular redox state to the inactivation of p16INK4A through the formation of amyloid fibrils. Keywords: Amyloids, Protein aggregation, Redox signaling, Cysteine oxidation, Structural biology |
url |
http://www.sciencedirect.com/science/article/pii/S2213231719307918 |
work_keys_str_mv |
AT christophgobl cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT vanessakmorris cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT loesvandam cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT mariekevisscher cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT paulienepolderman cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT christophhartlmuller cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT hestherderuiter cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT manuelhora cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT lauraliesinger cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT ruthbirnergruenberger cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT harmjanrvos cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT berndreif cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT tobiasmadl cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a AT tobiasbdansen cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a |
_version_ |
1725855475467026432 |
spelling |
doaj-455304bdf2544f08bd2e21616c0f6c162020-11-24T21:57:28ZengElsevierRedox Biology2213-23172020-01-0128Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4AChristoph Göbl0Vanessa K. Morris1Loes van Dam2Marieke Visscher3Paulien E. Polderman4Christoph Hartlmüller5Hesther de Ruiter6Manuel Hora7Laura Liesinger8Ruth Birner-Gruenberger9Harmjan R. Vos10Bernd Reif11Tobias Madl12Tobias B. Dansen13Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyCenter for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyOmics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, AustriaOmics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, AustriaCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyGottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria; BioTechMed-Graz, Austria; Corresponding author. Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria.Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands; Corresponding author. Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands.The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible oxidation of cysteines (redox signaling). Here we report that oxidation of the single cysteine in p16INK4A in human cells occurs under relatively mild oxidizing conditions and leads to disulfide-dependent dimerization. p16INK4A is an all α-helical protein, but we find that upon cysteine-dependent dimerization, p16INK4A undergoes a dramatic structural rearrangement and forms aggregates that have the typical features of amyloid fibrils, including binding of diagnostic dyes, presence of cross-β sheet structure, and typical dimensions found in electron microscopy. p16INK4A amyloid formation abolishes its function as a Cyclin Dependent Kinase 4/6 inhibitor. Collectively, these observations mechanistically link the cellular redox state to the inactivation of p16INK4A through the formation of amyloid fibrils. Keywords: Amyloids, Protein aggregation, Redox signaling, Cysteine oxidation, Structural biologyhttp://www.sciencedirect.com/science/article/pii/S2213231719307918 |