Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A

The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible...

Full description

Bibliographic Details
Main Authors: Christoph Göbl, Vanessa K. Morris, Loes van Dam, Marieke Visscher, Paulien E. Polderman, Christoph Hartlmüller, Hesther de Ruiter, Manuel Hora, Laura Liesinger, Ruth Birner-Gruenberger, Harmjan R. Vos, Bernd Reif, Tobias Madl, Tobias B. Dansen
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:Redox Biology
Online Access:http://www.sciencedirect.com/science/article/pii/S2213231719307918
id doaj-455304bdf2544f08bd2e21616c0f6c16
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Christoph Göbl
Vanessa K. Morris
Loes van Dam
Marieke Visscher
Paulien E. Polderman
Christoph Hartlmüller
Hesther de Ruiter
Manuel Hora
Laura Liesinger
Ruth Birner-Gruenberger
Harmjan R. Vos
Bernd Reif
Tobias Madl
Tobias B. Dansen
spellingShingle Christoph Göbl
Vanessa K. Morris
Loes van Dam
Marieke Visscher
Paulien E. Polderman
Christoph Hartlmüller
Hesther de Ruiter
Manuel Hora
Laura Liesinger
Ruth Birner-Gruenberger
Harmjan R. Vos
Bernd Reif
Tobias Madl
Tobias B. Dansen
Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A
Redox Biology
author_facet Christoph Göbl
Vanessa K. Morris
Loes van Dam
Marieke Visscher
Paulien E. Polderman
Christoph Hartlmüller
Hesther de Ruiter
Manuel Hora
Laura Liesinger
Ruth Birner-Gruenberger
Harmjan R. Vos
Bernd Reif
Tobias Madl
Tobias B. Dansen
author_sort Christoph Göbl
title Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A
title_short Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A
title_full Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A
title_fullStr Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A
title_full_unstemmed Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4A
title_sort cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16ink4a
publisher Elsevier
series Redox Biology
issn 2213-2317
publishDate 2020-01-01
description The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible oxidation of cysteines (redox signaling). Here we report that oxidation of the single cysteine in p16INK4A in human cells occurs under relatively mild oxidizing conditions and leads to disulfide-dependent dimerization. p16INK4A is an all α-helical protein, but we find that upon cysteine-dependent dimerization, p16INK4A undergoes a dramatic structural rearrangement and forms aggregates that have the typical features of amyloid fibrils, including binding of diagnostic dyes, presence of cross-β sheet structure, and typical dimensions found in electron microscopy. p16INK4A amyloid formation abolishes its function as a Cyclin Dependent Kinase 4/6 inhibitor. Collectively, these observations mechanistically link the cellular redox state to the inactivation of p16INK4A through the formation of amyloid fibrils. Keywords: Amyloids, Protein aggregation, Redox signaling, Cysteine oxidation, Structural biology
url http://www.sciencedirect.com/science/article/pii/S2213231719307918
work_keys_str_mv AT christophgobl cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT vanessakmorris cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT loesvandam cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT mariekevisscher cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT paulienepolderman cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT christophhartlmuller cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT hestherderuiter cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT manuelhora cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT lauraliesinger cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT ruthbirnergruenberger cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT harmjanrvos cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT berndreif cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT tobiasmadl cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
AT tobiasbdansen cysteineoxidationtriggersamyloidfibrilformationofthetumorsuppressorp16ink4a
_version_ 1725855475467026432
spelling doaj-455304bdf2544f08bd2e21616c0f6c162020-11-24T21:57:28ZengElsevierRedox Biology2213-23172020-01-0128Cysteine oxidation triggers amyloid fibril formation of the tumor suppressor p16INK4AChristoph Göbl0Vanessa K. Morris1Loes van Dam2Marieke Visscher3Paulien E. Polderman4Christoph Hartlmüller5Hesther de Ruiter6Manuel Hora7Laura Liesinger8Ruth Birner-Gruenberger9Harmjan R. Vos10Bernd Reif11Tobias Madl12Tobias B. Dansen13Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyCenter for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyOmics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, AustriaOmics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, AustriaCenter for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The NetherlandsCenter for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, GermanyGottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria; BioTechMed-Graz, Austria; Corresponding author. Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010, Graz, Austria.Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands; Corresponding author. Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, The Netherlands.The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible oxidation of cysteines (redox signaling). Here we report that oxidation of the single cysteine in p16INK4A in human cells occurs under relatively mild oxidizing conditions and leads to disulfide-dependent dimerization. p16INK4A is an all α-helical protein, but we find that upon cysteine-dependent dimerization, p16INK4A undergoes a dramatic structural rearrangement and forms aggregates that have the typical features of amyloid fibrils, including binding of diagnostic dyes, presence of cross-β sheet structure, and typical dimensions found in electron microscopy. p16INK4A amyloid formation abolishes its function as a Cyclin Dependent Kinase 4/6 inhibitor. Collectively, these observations mechanistically link the cellular redox state to the inactivation of p16INK4A through the formation of amyloid fibrils. Keywords: Amyloids, Protein aggregation, Redox signaling, Cysteine oxidation, Structural biologyhttp://www.sciencedirect.com/science/article/pii/S2213231719307918