A Multitask Learning Model for Traffic Flow and Speed Forecasting
Intelligent Transportation Systems (ITS) research and applications benefit from accurate short-term traffic state forecasting. To improve the forecasting accuracy, this paper proposes a deep learning based multitask learning Gated Recurrent Units (MTL-GRU) with residual mappings. To enhance the perf...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9080108/ |