Stochastic Robust Team Formation Tracking Design of Multi-VTOL-UAV Networked Control System in Smart City Under Time-Varying Delay and Random Fluctuation

In this study, the robust H∞ event-triggered team formation tracking control design of multi-VTOL-UAVs in networked system is investigated. To describe the realistic networked system and UAV model, the intrinsic continuous Wiener random fluctuation, discontinuous Poisson random fluctuatio...

Full description

Bibliographic Details
Main Authors: Min-Yen Lee, Bor-Sen Chen, Yi Chang, Chih-Lyang Hwang
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9142225/
Description
Summary:In this study, the robust H∞ event-triggered team formation tracking control design of multi-VTOL-UAVs in networked system is investigated. To describe the realistic networked system and UAV model, the intrinsic continuous Wiener random fluctuation, discontinuous Poisson random fluctuations, external disturbances and time-varying delays of wireless network are formulated in the proposed nonlinear stochastic jump diffusion system structure. By combining the event-triggered multi-UAV dynamic models and reference model into an augmented system, the robust H∞ event-triggered multi-UAV networked team tracking problem can be transformed to a Hamilton-Jacobi inequality(HJI)-constraint optimization problem. Due to the difficulties in solving HJI-constraint optimization problem, for practical application, the T-S fuzzy techniques are adopted to efficiently approximate the nonlinear multi-UAVs system by a set of local linearized networked systems. Thus, the HJI-constraint optimization problem for the H∞ event-triggered robust formation team tracking control can be transformed to a linear matrix inequality(LMI)-constraint optimization problem and can be easily solved by the convex optimization techniques. Finally, a simulation example is given to validate the effectiveness of the proposed event-triggered robust H∞ team formation tracking control for the multi-VTOL-UAV system.
ISSN:2169-3536