Existence of radially symmetric patterns for a diffusion problem with variable diffusivity

We give a sufficient condition for the existence of radially symmetric stable stationary solution of the problem $u_t=\operatorname{div}(a^2\nabla u)+f(u)$ on the unit ball whose border is supplied with zero Neumann boundary condition. Such a condition involves the diffusivity function $a$ and the t...

Full description

Bibliographic Details
Main Author: Maicon Sônego
Format: Article
Language:English
Published: University of Szeged 2017-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5672