Bandgap prediction of two-dimensional materials using machine learning.
The bandgap of two-dimensional (2D) materials plays an important role in their applications to various devices. For instance, the gapless nature of graphene limits the use of this material to semiconductor device applications, whereas the indirect bandgap of molybdenum disulfide is suitable for elec...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2021-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0255637 |