Analysis of Single Locus Trajectories for Extracting In Vivo Chromatin Tethering Interactions.

Is it possible to extract tethering forces applied on chromatin from the statistics of a single locus trajectories imaged in vivo? Chromatin fragments interact with many partners such as the nuclear membrane, other chromosomes or nuclear bodies, but the resulting forces cannot be directly measured i...

Full description

Bibliographic Details
Main Authors: Assaf Amitai, Mathias Toulouze, Karine Dubrana, David Holcman
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-08-01
Series:PLoS Computational Biology
Online Access:http://europepmc.org/articles/PMC4552938?pdf=render
Description
Summary:Is it possible to extract tethering forces applied on chromatin from the statistics of a single locus trajectories imaged in vivo? Chromatin fragments interact with many partners such as the nuclear membrane, other chromosomes or nuclear bodies, but the resulting forces cannot be directly measured in vivo. However, they impact chromatin dynamics and should be reflected in particular in the motion of a single locus. We present here a method based on polymer models and statistics of single trajectories to extract the force characteristics and in particular when they are generated by the gradient of a quadratic potential well. Using numerical simulations of a Rouse polymer and live cell imaging of the MAT-locus located on the yeast Saccharomyces cerevisiae chromosome III, we recover the amplitude and the distance between the observed and the interacting monomer. To conclude, the confined trajectories we observed in vivo reflect local interaction on chromatin.
ISSN:1553-734X
1553-7358