Revisiting the sub- and super-solution method for the classical radial solutions of the mean curvature equation

This paper focuses on the existence and the multiplicity of classical radially symmetric solutions of the mean curvature problem:−div∇v1+|∇v|2=f(x,v,∇v)inΩ,a0v+a1∂v∂ν=0on∂Ω,\left\{\begin{array}{ll}-\text{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v{|}^{2}}}\right)=f(x,v,\nabla v)& \text{in}\hspac...

Full description

Bibliographic Details
Main Authors: Obersnel Franco, Omari Pierpaolo
Format: Article
Language:English
Published: De Gruyter 2020-10-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2020-0097