Revisiting the sub- and super-solution method for the classical radial solutions of the mean curvature equation
This paper focuses on the existence and the multiplicity of classical radially symmetric solutions of the mean curvature problem:−div∇v1+|∇v|2=f(x,v,∇v)inΩ,a0v+a1∂v∂ν=0on∂Ω,\left\{\begin{array}{ll}-\text{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v{|}^{2}}}\right)=f(x,v,\nabla v)& \text{in}\hspac...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-10-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2020-0097 |