Development of a data-driven model for turbulent heat transfer in turbomachinery
Machine Learning (ML) algorithms have become popular in many fields, including applications related to turbomachinery and heat transfer. The key properties of ML are the capability to partially tackle the problem of slowing down of Moore’s law and to dig-out correlations within large datasets like t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2020-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/57/e3sconf_ati2020_11006.pdf |