Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer
Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produ...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-12-01
|
Series: | Metabolic Engineering Communications |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2214030119300173 |
id |
doaj-3cb30374804143699fff66873aeaa395 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mitchell G. Thompson Luis E. Valencia Jacquelyn M. Blake-Hedges Pablo Cruz-Morales Alexandria E. Velasquez Allison N. Pearson Lauren N. Sermeno William A. Sharpless Veronica T. Benites Yan Chen Edward E.K. Baidoo Christopher J. Petzold Adam M. Deutschbauer Jay D. Keasling |
spellingShingle |
Mitchell G. Thompson Luis E. Valencia Jacquelyn M. Blake-Hedges Pablo Cruz-Morales Alexandria E. Velasquez Allison N. Pearson Lauren N. Sermeno William A. Sharpless Veronica T. Benites Yan Chen Edward E.K. Baidoo Christopher J. Petzold Adam M. Deutschbauer Jay D. Keasling Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer Metabolic Engineering Communications |
author_facet |
Mitchell G. Thompson Luis E. Valencia Jacquelyn M. Blake-Hedges Pablo Cruz-Morales Alexandria E. Velasquez Allison N. Pearson Lauren N. Sermeno William A. Sharpless Veronica T. Benites Yan Chen Edward E.K. Baidoo Christopher J. Petzold Adam M. Deutschbauer Jay D. Keasling |
author_sort |
Mitchell G. Thompson |
title |
Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer |
title_short |
Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer |
title_full |
Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer |
title_fullStr |
Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer |
title_full_unstemmed |
Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer |
title_sort |
omics-driven identification and elimination of valerolactam catabolism in pseudomonas putida kt2440 for increased product titer |
publisher |
Elsevier |
series |
Metabolic Engineering Communications |
issn |
2214-0301 |
publishDate |
2019-12-01 |
description |
Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year (Zhang et al., 2017). To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts. |
url |
http://www.sciencedirect.com/science/article/pii/S2214030119300173 |
work_keys_str_mv |
AT mitchellgthompson omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT luisevalencia omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT jacquelynmblakehedges omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT pablocruzmorales omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT alexandriaevelasquez omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT allisonnpearson omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT laurennsermeno omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT williamasharpless omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT veronicatbenites omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT yanchen omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT edwardekbaidoo omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT christopherjpetzold omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT adammdeutschbauer omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter AT jaydkeasling omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter |
_version_ |
1725145370991788032 |
spelling |
doaj-3cb30374804143699fff66873aeaa3952020-11-25T01:17:51ZengElsevierMetabolic Engineering Communications2214-03012019-12-019Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titerMitchell G. Thompson0Luis E. Valencia1Jacquelyn M. Blake-Hedges2Pablo Cruz-Morales3Alexandria E. Velasquez4Allison N. Pearson5Lauren N. Sermeno6William A. Sharpless7Veronica T. Benites8Yan Chen9Edward E.K. Baidoo10Christopher J. Petzold11Adam M. Deutschbauer12Jay D. Keasling13Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley/San Francisco, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemistry, University of California, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Centro de Biotecnologia FEMSA, Instituto Tecnologico y de Estudios Superiores de Monterrey, MexicoJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USADepartment of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley/San Francisco, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China; Corresponding author. Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, ChinaPseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year (Zhang et al., 2017). To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.http://www.sciencedirect.com/science/article/pii/S2214030119300173 |