Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer

Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produ...

Full description

Bibliographic Details
Main Authors: Mitchell G. Thompson, Luis E. Valencia, Jacquelyn M. Blake-Hedges, Pablo Cruz-Morales, Alexandria E. Velasquez, Allison N. Pearson, Lauren N. Sermeno, William A. Sharpless, Veronica T. Benites, Yan Chen, Edward E.K. Baidoo, Christopher J. Petzold, Adam M. Deutschbauer, Jay D. Keasling
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:Metabolic Engineering Communications
Online Access:http://www.sciencedirect.com/science/article/pii/S2214030119300173
id doaj-3cb30374804143699fff66873aeaa395
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Mitchell G. Thompson
Luis E. Valencia
Jacquelyn M. Blake-Hedges
Pablo Cruz-Morales
Alexandria E. Velasquez
Allison N. Pearson
Lauren N. Sermeno
William A. Sharpless
Veronica T. Benites
Yan Chen
Edward E.K. Baidoo
Christopher J. Petzold
Adam M. Deutschbauer
Jay D. Keasling
spellingShingle Mitchell G. Thompson
Luis E. Valencia
Jacquelyn M. Blake-Hedges
Pablo Cruz-Morales
Alexandria E. Velasquez
Allison N. Pearson
Lauren N. Sermeno
William A. Sharpless
Veronica T. Benites
Yan Chen
Edward E.K. Baidoo
Christopher J. Petzold
Adam M. Deutschbauer
Jay D. Keasling
Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer
Metabolic Engineering Communications
author_facet Mitchell G. Thompson
Luis E. Valencia
Jacquelyn M. Blake-Hedges
Pablo Cruz-Morales
Alexandria E. Velasquez
Allison N. Pearson
Lauren N. Sermeno
William A. Sharpless
Veronica T. Benites
Yan Chen
Edward E.K. Baidoo
Christopher J. Petzold
Adam M. Deutschbauer
Jay D. Keasling
author_sort Mitchell G. Thompson
title Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer
title_short Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer
title_full Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer
title_fullStr Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer
title_full_unstemmed Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titer
title_sort omics-driven identification and elimination of valerolactam catabolism in pseudomonas putida kt2440 for increased product titer
publisher Elsevier
series Metabolic Engineering Communications
issn 2214-0301
publishDate 2019-12-01
description Pseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year (Zhang et al., 2017). To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.
url http://www.sciencedirect.com/science/article/pii/S2214030119300173
work_keys_str_mv AT mitchellgthompson omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT luisevalencia omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT jacquelynmblakehedges omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT pablocruzmorales omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT alexandriaevelasquez omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT allisonnpearson omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT laurennsermeno omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT williamasharpless omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT veronicatbenites omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT yanchen omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT edwardekbaidoo omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT christopherjpetzold omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT adammdeutschbauer omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
AT jaydkeasling omicsdrivenidentificationandeliminationofvalerolactamcatabolisminpseudomonasputidakt2440forincreasedproducttiter
_version_ 1725145370991788032
spelling doaj-3cb30374804143699fff66873aeaa3952020-11-25T01:17:51ZengElsevierMetabolic Engineering Communications2214-03012019-12-019Omics-driven identification and elimination of valerolactam catabolism in Pseudomonas putida KT2440 for increased product titerMitchell G. Thompson0Luis E. Valencia1Jacquelyn M. Blake-Hedges2Pablo Cruz-Morales3Alexandria E. Velasquez4Allison N. Pearson5Lauren N. Sermeno6William A. Sharpless7Veronica T. Benites8Yan Chen9Edward E.K. Baidoo10Christopher J. Petzold11Adam M. Deutschbauer12Jay D. Keasling13Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley/San Francisco, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemistry, University of California, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Centro de Biotecnologia FEMSA, Instituto Tecnologico y de Estudios Superiores de Monterrey, MexicoJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USADepartment of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USAJoint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley/San Francisco, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China; Corresponding author. Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, ChinaPseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year (Zhang et al., 2017). To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 h of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.http://www.sciencedirect.com/science/article/pii/S2214030119300173