Mixed Initial-Boundary Value Problem for the Capillary Wave Equation
We study the mixed initial-boundary value problem for the capillary wave equation: iut+u2u=∂x3/2u, t>0, x>0; u(x,0)=u0(x), x>0; u(0,t)+βux(0,t)=h(t), t>0, where ∂x3/2u=(1/2π)∫0∞signx-y/x-yuyy(y) dy. We prove the global in-time existence of solutions of IBV problem for nonlinear cap...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2016/7475061 |