A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereb...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2012-08-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://dx.doi.org/10.3842/SIGMA.2012.057 |
id |
doaj-3aeabfa3e42a4a8fbc6bc27f729c6712 |
---|---|
record_format |
Article |
spelling |
doaj-3aeabfa3e42a4a8fbc6bc27f729c67122020-11-24T22:39:58ZengNational Academy of Science of UkraineSymmetry, Integrability and Geometry: Methods and Applications1815-06592012-08-018057A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable ReductionHongli AnColin RogersA 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system.http://dx.doi.org/10.3842/SIGMA.2012.057magnetogasdynamic systemelliptic vortexHamiltonian-Ermakov structureLax pair |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hongli An Colin Rogers |
spellingShingle |
Hongli An Colin Rogers A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction Symmetry, Integrability and Geometry: Methods and Applications magnetogasdynamic system elliptic vortex Hamiltonian-Ermakov structure Lax pair |
author_facet |
Hongli An Colin Rogers |
author_sort |
Hongli An |
title |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_short |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_full |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_fullStr |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_full_unstemmed |
A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction |
title_sort |
2+1-dimensional non-isothermal magnetogasdynamic system. hamiltonian-ermakov integrable reduction |
publisher |
National Academy of Science of Ukraine |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
issn |
1815-0659 |
publishDate |
2012-08-01 |
description |
A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov-Ray-Reid system. |
topic |
magnetogasdynamic system elliptic vortex Hamiltonian-Ermakov structure Lax pair |
url |
http://dx.doi.org/10.3842/SIGMA.2012.057 |
work_keys_str_mv |
AT honglian a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT colinrogers a21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT honglian 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction AT colinrogers 21dimensionalnonisothermalmagnetogasdynamicsystemhamiltonianermakovintegrablereduction |
_version_ |
1725706620479995904 |