A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction

A 2+1-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when γ=2 to a nonlinear dynamical subsystem with underlying integrable Hamiltonian-Ermakov structure. Exact solutions of the magnetogasdynamic system are thereb...

Full description

Bibliographic Details
Main Authors: Hongli An, Colin Rogers
Format: Article
Language:English
Published: National Academy of Science of Ukraine 2012-08-01
Series:Symmetry, Integrability and Geometry: Methods and Applications
Subjects:
Online Access:http://dx.doi.org/10.3842/SIGMA.2012.057