Utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissage

The study of online learning, whether aimed at understanding this form of situated human learning, at evaluating relevant pedagogical scenarios and settings or at improving technological environments, requires the availability of interaction data from all participants in the learning situations. How...

Full description

Bibliographic Details
Main Authors: Thierry Chanier, Maud Ciekanski
Format: Article
Language:fra
Published: Université Marc Bloch 2010-12-01
Series:ALSIC : Apprentissage des Langues et Systèmes d'Information et de Communication
Subjects:
Online Access:http://journals.openedition.org/alsic/1666
id doaj-32f835bb21914da1a4a7293cb959ff2a
record_format Article
spelling doaj-32f835bb21914da1a4a7293cb959ff2a2020-11-25T02:11:05ZfraUniversité Marc BlochALSIC : Apprentissage des Langues et Systèmes d'Information et de Communication1286-49862010-12-011310.4000/alsic.1666Utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissageThierry ChanierMaud CiekanskiThe study of online learning, whether aimed at understanding this form of situated human learning, at evaluating relevant pedagogical scenarios and settings or at improving technological environments, requires the availability of interaction data from all participants in the learning situations. However, usually data are either inaccessible, or of limited access to those who were not involved in the original project. Moreover data are fragmented, therefore decontextualized with respect to the original teaching/learning settings. Sometimes they are buried in a proprietary format within the technological environment. The consequence is that research lacks a scientific basis. In the literature comparisons are often attempted between objects that are ill-defined and may in fact be different. The processes of scientific enquiry, such as re-analyzing, replicating, verifying, refuting or extending the original findings, are therefore disabled. To address this anomaly, we suggest to create and disseminate a new type of corpus, a contextualized learner corpus, entitled "LEarning and TEaching Corpus" (Letec). Such corpora include not only the data that correspond to output of learner activity in online courses, but also their context. Sharing Letec corpora within the research community implies that: (1) corpora are formatted and structured according to a new model which is compatible with existing standards for corpora and for learning design specifications; (2) corpora are placed on a server offering cross-platform compatibility and free access; (3) an ethics policy is formulated as well as copyright-licences. This paper presents the answers brought by our Mulce project from a theoretical and methodological standpoint. We give examples extracted from two learning and teaching corpora (Simuligne and Copéas). We show how data structured accordingly to the Mulce format can be transformed and processed by analysis tools available in different research communities. The article sheds light on the potential of such tools for the study of polyfocalisation and multimodal writing. It concludes with the scientific benefits researchers may expect at an institutional level when collecting and structuring data.http://journals.openedition.org/alsic/1666corporamultimodalityonline interactionreplicationtools sharing
collection DOAJ
language fra
format Article
sources DOAJ
author Thierry Chanier
Maud Ciekanski
spellingShingle Thierry Chanier
Maud Ciekanski
Utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissage
ALSIC : Apprentissage des Langues et Systèmes d'Information et de Communication
corpora
multimodality
online interaction
replication
tools sharing
author_facet Thierry Chanier
Maud Ciekanski
author_sort Thierry Chanier
title Utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissage
title_short Utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissage
title_full Utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissage
title_fullStr Utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissage
title_full_unstemmed Utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissage
title_sort utilité du partage des corpus pour l'analyse des interactions en ligne en situation d'apprentissage : un exemple d'approche méthodologique autour d'une base de corpus d'apprentissage
publisher Université Marc Bloch
series ALSIC : Apprentissage des Langues et Systèmes d'Information et de Communication
issn 1286-4986
publishDate 2010-12-01
description The study of online learning, whether aimed at understanding this form of situated human learning, at evaluating relevant pedagogical scenarios and settings or at improving technological environments, requires the availability of interaction data from all participants in the learning situations. However, usually data are either inaccessible, or of limited access to those who were not involved in the original project. Moreover data are fragmented, therefore decontextualized with respect to the original teaching/learning settings. Sometimes they are buried in a proprietary format within the technological environment. The consequence is that research lacks a scientific basis. In the literature comparisons are often attempted between objects that are ill-defined and may in fact be different. The processes of scientific enquiry, such as re-analyzing, replicating, verifying, refuting or extending the original findings, are therefore disabled. To address this anomaly, we suggest to create and disseminate a new type of corpus, a contextualized learner corpus, entitled "LEarning and TEaching Corpus" (Letec). Such corpora include not only the data that correspond to output of learner activity in online courses, but also their context. Sharing Letec corpora within the research community implies that: (1) corpora are formatted and structured according to a new model which is compatible with existing standards for corpora and for learning design specifications; (2) corpora are placed on a server offering cross-platform compatibility and free access; (3) an ethics policy is formulated as well as copyright-licences. This paper presents the answers brought by our Mulce project from a theoretical and methodological standpoint. We give examples extracted from two learning and teaching corpora (Simuligne and Copéas). We show how data structured accordingly to the Mulce format can be transformed and processed by analysis tools available in different research communities. The article sheds light on the potential of such tools for the study of polyfocalisation and multimodal writing. It concludes with the scientific benefits researchers may expect at an institutional level when collecting and structuring data.
topic corpora
multimodality
online interaction
replication
tools sharing
url http://journals.openedition.org/alsic/1666
work_keys_str_mv AT thierrychanier utilitedupartagedescorpuspourlanalysedesinteractionsenligneensituationdapprentissageunexempledapprochemethodologiqueautourdunebasedecorpusdapprentissage
AT maudciekanski utilitedupartagedescorpuspourlanalysedesinteractionsenligneensituationdapprentissageunexempledapprochemethodologiqueautourdunebasedecorpusdapprentissage
_version_ 1724916360778088448