Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells

Summary: Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some char...

Full description

Bibliographic Details
Main Authors: Kirstin B. VanderWall, Ridhima Vij, Sarah K. Ohlemacher, Akshayalakshmi Sridhar, Clarisse M. Fligor, Elyse M. Feder, Michael C. Edler, Anthony J. Baucum, II, Theodore R. Cummins, Jason S. Meyer
Format: Article
Language:English
Published: Elsevier 2019-02-01
Series:Stem Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2213671118305290
Description
Summary:Summary: Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation. Thus, efforts of the current study examined the functional maturation of hPSC-derived RGCs, including the ability of astrocytes to modulate this developmental timeline. Morphological and functional properties of RGCs were found to increase over time, with astrocytes significantly accelerating the functional maturation of hPSC-derived RGCs. The results of this study clearly demonstrate the functional and morphological maturation of RGCs in vitro, including the effects of astrocytes on the maturation of hPSC-derived RGCs. : In this article, VanderWall and colleagues demonstrate the morphological and functional maturation of hPSC-derived RGCs over time, including the role of astrocytes in their functional maturation. Results indicated that hPSC-derived RGCs were capable of exhibiting robust neurite outgrowth and functional properties, with the direct contact with astrocytes significantly enhancing this maturation. As astrocytes are a major component of the nerve fiber layer and optic nerve, the results of these studies constitute a model for studying these cellular interactions in vitro. Keywords: stem cell, retina, retinal ganglion cell, astrocyte, development, differentiation, pluripotent stem cell
ISSN:2213-6711