Infinitely many solutions for Kirchhoff-type problems depending on a parameter
In this article, we study a Kirchhoff type problem with a positive parameter $\lambda$, $$\displaylines{ -K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda f(x,u) , \quad \text{in } \Omega , \cr u=0, \quad \text{on } \partial \Omega , }$$ where $K:[0,+\infty )\to \mathbb{R} $ is a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2016-08-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2016/224/abstr.html |
id |
doaj-31fa062c987d49339f302781bb08b852 |
---|---|
record_format |
Article |
spelling |
doaj-31fa062c987d49339f302781bb08b8522020-11-24T20:53:08ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912016-08-012016224,110Infinitely many solutions for Kirchhoff-type problems depending on a parameterJuntao Sun0Yongbao Ji1Tsung-fang Wu2 Hohai Univ., Nanjing, China Shanghai Univ. of Finance and Economics, Shanghai, China National Univ. of Kaohsiung, Taiwan In this article, we study a Kirchhoff type problem with a positive parameter $\lambda$, $$\displaylines{ -K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda f(x,u) , \quad \text{in } \Omega , \cr u=0, \quad \text{on } \partial \Omega , }$$ where $K:[0,+\infty )\to \mathbb{R} $ is a continuous function and $f:\Omega \times \mathbb{R}\to \mathbb{R}$ is a $L^{1}$-Caratheodory function. Under suitable assumptions on K(t) and f(x,u), we obtain the existence of infinitely many solutions depending on the real parameter $\lambda$. Unlike most other papers, we do not require any symmetric condition on the nonlinear term $f(x,u)$. Our proof is based on variational methods.http://ejde.math.txstate.edu/Volumes/2016/224/abstr.htmlInfinitely many solutionsKirchhoff type problemvariational method |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Juntao Sun Yongbao Ji Tsung-fang Wu |
spellingShingle |
Juntao Sun Yongbao Ji Tsung-fang Wu Infinitely many solutions for Kirchhoff-type problems depending on a parameter Electronic Journal of Differential Equations Infinitely many solutions Kirchhoff type problem variational method |
author_facet |
Juntao Sun Yongbao Ji Tsung-fang Wu |
author_sort |
Juntao Sun |
title |
Infinitely many solutions for Kirchhoff-type problems depending on a parameter |
title_short |
Infinitely many solutions for Kirchhoff-type problems depending on a parameter |
title_full |
Infinitely many solutions for Kirchhoff-type problems depending on a parameter |
title_fullStr |
Infinitely many solutions for Kirchhoff-type problems depending on a parameter |
title_full_unstemmed |
Infinitely many solutions for Kirchhoff-type problems depending on a parameter |
title_sort |
infinitely many solutions for kirchhoff-type problems depending on a parameter |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2016-08-01 |
description |
In this article, we study a Kirchhoff type problem with a positive parameter
$\lambda$,
$$\displaylines{
-K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda
f(x,u) , \quad \text{in } \Omega , \cr
u=0, \quad \text{on } \partial \Omega ,
}$$
where $K:[0,+\infty )\to \mathbb{R} $ is a continuous
function and $f:\Omega \times \mathbb{R}\to \mathbb{R}$ is a
$L^{1}$-Caratheodory function. Under suitable assumptions
on K(t) and f(x,u), we obtain the existence of infinitely many
solutions depending on the real parameter $\lambda$.
Unlike most other papers, we do not require any symmetric condition
on the nonlinear term $f(x,u)$. Our proof is based on variational methods. |
topic |
Infinitely many solutions Kirchhoff type problem variational method |
url |
http://ejde.math.txstate.edu/Volumes/2016/224/abstr.html |
work_keys_str_mv |
AT juntaosun infinitelymanysolutionsforkirchhofftypeproblemsdependingonaparameter AT yongbaoji infinitelymanysolutionsforkirchhofftypeproblemsdependingonaparameter AT tsungfangwu infinitelymanysolutionsforkirchhofftypeproblemsdependingonaparameter |
_version_ |
1716797939573063680 |