Infinitely many solutions for Kirchhoff-type problems depending on a parameter

In this article, we study a Kirchhoff type problem with a positive parameter $\lambda$, $$\displaylines{ -K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda f(x,u) , \quad \text{in } \Omega , \cr u=0, \quad \text{on } \partial \Omega , }$$ where $K:[0,+\infty )\to \mathbb{R} $ is a...

Full description

Bibliographic Details
Main Authors: Juntao Sun, Yongbao Ji, Tsung-fang Wu
Format: Article
Language:English
Published: Texas State University 2016-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/224/abstr.html
id doaj-31fa062c987d49339f302781bb08b852
record_format Article
spelling doaj-31fa062c987d49339f302781bb08b8522020-11-24T20:53:08ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912016-08-012016224,110Infinitely many solutions for Kirchhoff-type problems depending on a parameterJuntao Sun0Yongbao Ji1Tsung-fang Wu2 Hohai Univ., Nanjing, China Shanghai Univ. of Finance and Economics, Shanghai, China National Univ. of Kaohsiung, Taiwan In this article, we study a Kirchhoff type problem with a positive parameter $\lambda$, $$\displaylines{ -K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda f(x,u) , \quad \text{in } \Omega , \cr u=0, \quad \text{on } \partial \Omega , }$$ where $K:[0,+\infty )\to \mathbb{R} $ is a continuous function and $f:\Omega \times \mathbb{R}\to \mathbb{R}$ is a $L^{1}$-Caratheodory function. Under suitable assumptions on K(t) and f(x,u), we obtain the existence of infinitely many solutions depending on the real parameter $\lambda$. Unlike most other papers, we do not require any symmetric condition on the nonlinear term $f(x,u)$. Our proof is based on variational methods.http://ejde.math.txstate.edu/Volumes/2016/224/abstr.htmlInfinitely many solutionsKirchhoff type problemvariational method
collection DOAJ
language English
format Article
sources DOAJ
author Juntao Sun
Yongbao Ji
Tsung-fang Wu
spellingShingle Juntao Sun
Yongbao Ji
Tsung-fang Wu
Infinitely many solutions for Kirchhoff-type problems depending on a parameter
Electronic Journal of Differential Equations
Infinitely many solutions
Kirchhoff type problem
variational method
author_facet Juntao Sun
Yongbao Ji
Tsung-fang Wu
author_sort Juntao Sun
title Infinitely many solutions for Kirchhoff-type problems depending on a parameter
title_short Infinitely many solutions for Kirchhoff-type problems depending on a parameter
title_full Infinitely many solutions for Kirchhoff-type problems depending on a parameter
title_fullStr Infinitely many solutions for Kirchhoff-type problems depending on a parameter
title_full_unstemmed Infinitely many solutions for Kirchhoff-type problems depending on a parameter
title_sort infinitely many solutions for kirchhoff-type problems depending on a parameter
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2016-08-01
description In this article, we study a Kirchhoff type problem with a positive parameter $\lambda$, $$\displaylines{ -K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda f(x,u) , \quad \text{in } \Omega , \cr u=0, \quad \text{on } \partial \Omega , }$$ where $K:[0,+\infty )\to \mathbb{R} $ is a continuous function and $f:\Omega \times \mathbb{R}\to \mathbb{R}$ is a $L^{1}$-Caratheodory function. Under suitable assumptions on K(t) and f(x,u), we obtain the existence of infinitely many solutions depending on the real parameter $\lambda$. Unlike most other papers, we do not require any symmetric condition on the nonlinear term $f(x,u)$. Our proof is based on variational methods.
topic Infinitely many solutions
Kirchhoff type problem
variational method
url http://ejde.math.txstate.edu/Volumes/2016/224/abstr.html
work_keys_str_mv AT juntaosun infinitelymanysolutionsforkirchhofftypeproblemsdependingonaparameter
AT yongbaoji infinitelymanysolutionsforkirchhofftypeproblemsdependingonaparameter
AT tsungfangwu infinitelymanysolutionsforkirchhofftypeproblemsdependingonaparameter
_version_ 1716797939573063680