Infinitely many solutions for Kirchhoff-type problems depending on a parameter

In this article, we study a Kirchhoff type problem with a positive parameter $\lambda$, $$\displaylines{ -K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda f(x,u) , \quad \text{in } \Omega , \cr u=0, \quad \text{on } \partial \Omega , }$$ where $K:[0,+\infty )\to \mathbb{R} $ is a...

Full description

Bibliographic Details
Main Authors: Juntao Sun, Yongbao Ji, Tsung-fang Wu
Format: Article
Language:English
Published: Texas State University 2016-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/224/abstr.html