Infinitely many solutions for Kirchhoff-type problems depending on a parameter
In this article, we study a Kirchhoff type problem with a positive parameter $\lambda$, $$\displaylines{ -K\Big( \int_{\Omega }|\nabla u|^{2}dx\Big) \Delta u=\lambda f(x,u) , \quad \text{in } \Omega , \cr u=0, \quad \text{on } \partial \Omega , }$$ where $K:[0,+\infty )\to \mathbb{R} $ is a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2016-08-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2016/224/abstr.html |