Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints
An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2017-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2017/6893521 |
Summary: | An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF) is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN) is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness. |
---|---|
ISSN: | 1076-2787 1099-0526 |