Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites
Abstract Gene expression in Plasmodia integrates post-transcriptional regulation with epigenetic marking of active genomic regions through histone post-translational modifications (PTMs). To generate insights into the importance of histone PTMs to the entire asexual and sexual developmental cycles o...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-04-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-00687-7 |
id |
doaj-30900b8fa69341aba0c3aef8f66b9df6 |
---|---|
record_format |
Article |
spelling |
doaj-30900b8fa69341aba0c3aef8f66b9df62020-12-08T02:39:45ZengNature Publishing GroupScientific Reports2045-23222017-04-017111210.1038/s41598-017-00687-7Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasitesNanika Coetzee0Simone Sidoli1Riëtte van Biljon2Heather Painter3Manuel Llinás4Benjamin A. Garcia5Lyn-Marie Birkholtz6Department of Biochemistry, Institute for Sustainable Malaria Control, University of PretoriaEpigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaDepartment of Biochemistry, Institute for Sustainable Malaria Control, University of PretoriaDepartment of Biochemistry & Molecular Biology and Centre for Malaria Research, Pennsylvania State University, University ParkDepartment of Biochemistry & Molecular Biology and Centre for Malaria Research, Pennsylvania State University, University ParkEpigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaDepartment of Biochemistry, Institute for Sustainable Malaria Control, University of PretoriaAbstract Gene expression in Plasmodia integrates post-transcriptional regulation with epigenetic marking of active genomic regions through histone post-translational modifications (PTMs). To generate insights into the importance of histone PTMs to the entire asexual and sexual developmental cycles of the parasite, we used complementary and comparative quantitative chromatin proteomics to identify and functionally characterise histone PTMs in 8 distinct life cycle stages of P. falciparum parasites. ~500 individual histone PTMs were identified of which 106 could be stringently validated. 46 individual histone PTMs and 30 co-existing PTMs were fully quantified with high confidence. Importantly, 15 of these histone PTMs are novel for Plasmodia (e.g. H3K122ac, H3K27me3, H3K56me3). The comparative nature of the data revealed a highly dynamic histone PTM landscape during life cycle development, with a set of histone PTMs (H3K4ac, H3K9me1 and H3K36me2) displaying a unique and conserved abundance profile exclusively during gametocytogenesis (P < 0.001). Euchromatic histone PTMs are abundant during schizogony and late gametocytes; heterochromatic PTMs mark early gametocytes. Collectively, this data provides the most accurate, complete and comparative chromatin proteomic analyses of the entire life cycle development of malaria parasites. A substantial association between histone PTMs and stage-specific transition provides insights into the intricacies characterising Plasmodial developmental biology.https://doi.org/10.1038/s41598-017-00687-7 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nanika Coetzee Simone Sidoli Riëtte van Biljon Heather Painter Manuel Llinás Benjamin A. Garcia Lyn-Marie Birkholtz |
spellingShingle |
Nanika Coetzee Simone Sidoli Riëtte van Biljon Heather Painter Manuel Llinás Benjamin A. Garcia Lyn-Marie Birkholtz Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites Scientific Reports |
author_facet |
Nanika Coetzee Simone Sidoli Riëtte van Biljon Heather Painter Manuel Llinás Benjamin A. Garcia Lyn-Marie Birkholtz |
author_sort |
Nanika Coetzee |
title |
Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites |
title_short |
Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites |
title_full |
Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites |
title_fullStr |
Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites |
title_full_unstemmed |
Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites |
title_sort |
quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual plasmodium falciparum parasites |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2017-04-01 |
description |
Abstract Gene expression in Plasmodia integrates post-transcriptional regulation with epigenetic marking of active genomic regions through histone post-translational modifications (PTMs). To generate insights into the importance of histone PTMs to the entire asexual and sexual developmental cycles of the parasite, we used complementary and comparative quantitative chromatin proteomics to identify and functionally characterise histone PTMs in 8 distinct life cycle stages of P. falciparum parasites. ~500 individual histone PTMs were identified of which 106 could be stringently validated. 46 individual histone PTMs and 30 co-existing PTMs were fully quantified with high confidence. Importantly, 15 of these histone PTMs are novel for Plasmodia (e.g. H3K122ac, H3K27me3, H3K56me3). The comparative nature of the data revealed a highly dynamic histone PTM landscape during life cycle development, with a set of histone PTMs (H3K4ac, H3K9me1 and H3K36me2) displaying a unique and conserved abundance profile exclusively during gametocytogenesis (P < 0.001). Euchromatic histone PTMs are abundant during schizogony and late gametocytes; heterochromatic PTMs mark early gametocytes. Collectively, this data provides the most accurate, complete and comparative chromatin proteomic analyses of the entire life cycle development of malaria parasites. A substantial association between histone PTMs and stage-specific transition provides insights into the intricacies characterising Plasmodial developmental biology. |
url |
https://doi.org/10.1038/s41598-017-00687-7 |
work_keys_str_mv |
AT nanikacoetzee quantitativechromatinproteomicsrevealsadynamichistoneposttranslationalmodificationlandscapethatdefinesasexualandsexualplasmodiumfalciparumparasites AT simonesidoli quantitativechromatinproteomicsrevealsadynamichistoneposttranslationalmodificationlandscapethatdefinesasexualandsexualplasmodiumfalciparumparasites AT riettevanbiljon quantitativechromatinproteomicsrevealsadynamichistoneposttranslationalmodificationlandscapethatdefinesasexualandsexualplasmodiumfalciparumparasites AT heatherpainter quantitativechromatinproteomicsrevealsadynamichistoneposttranslationalmodificationlandscapethatdefinesasexualandsexualplasmodiumfalciparumparasites AT manuelllinas quantitativechromatinproteomicsrevealsadynamichistoneposttranslationalmodificationlandscapethatdefinesasexualandsexualplasmodiumfalciparumparasites AT benjaminagarcia quantitativechromatinproteomicsrevealsadynamichistoneposttranslationalmodificationlandscapethatdefinesasexualandsexualplasmodiumfalciparumparasites AT lynmariebirkholtz quantitativechromatinproteomicsrevealsadynamichistoneposttranslationalmodificationlandscapethatdefinesasexualandsexualplasmodiumfalciparumparasites |
_version_ |
1724393445389238272 |