Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes.
Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functi...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2010-08-01
|
Series: | PLoS Genetics |
Online Access: | http://europepmc.org/articles/PMC2920838?pdf=render |