Hierarchical and Unsupervised Graph Representation Learning with Loukas’s Coarsening
We propose a novel algorithm for unsupervised graph representation learning with attributed graphs. It combines three advantages addressing some current limitations of the literature: (i) The model is inductive: it can embed new graphs without re-training in the presence of new data; (ii) The method...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Algorithms |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4893/13/9/206 |