Soliton solutions for a quasilinear Schrodinger equation

In this article, critical point theory is used to show the existence of nontrivial weak solutions to the quasilinear Schrodinger equation $$ -\Delta_p u-\frac{p}{2^{p-1}}u\Delta_p(u^2)=f(x,u) $$ in a bounded smooth domain $\Omega\subset\mathbb{R}^{N}$ with Dirichlet boundary conditions.

Bibliographic Details
Main Author: Duchao Liu
Format: Article
Language:English
Published: Texas State University 2013-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/267/abstr.html