Czy konceptualizm jest wystarczającą podstawą dla odrzucenia niekonstruktywnych dowodów istnienia w matematyce?

Non-constructive existence proofs (which prove the existence of mathematical objects of a certain kind without giving any particular examples of such objects) are rejected by constructivists, who hold a conceptualist view that mathematical objects exist only if they are constructed. In the paper it...

Full description

Bibliographic Details
Main Author: Daniel Chlastawa
Format: Article
Language:deu
Published: Copernicus Center Press 2012-11-01
Series:Zagadnienia Filozoficzne w Nauce
Subjects:
Online Access:http://zfn.edu.pl/index.php/zfn/article/view/89